MATH 504 HOMEWORK 2

Due Wednesday, February 10.

Problem 1.

- (1) Suppose $A \neq \emptyset$ and there is a one-to-one function $f: A \rightarrow B$. Show that there is a surjective (i.e. onto) function $g: B \rightarrow A$.
- (2) Suppose B can be well-ordered and there is a surjective function $g: B \to A$. Show that there is a one-to-one function $f: A \to B$.

Problem 2. In ZF^- prove the Schröder-Bernstein theorem i.e. that if $A \leq B$ and $B \leq A$ implies that $A \approx B$.

Hint: Suppose $f: A \to B$ and $g: B \to A$ are one-to-one. Set $A_0 = A$, $B_0 = B$, $A_{n+1} = g^n B_n$, $B_{n+1} = f^n A_n$, $A_\infty = \bigcap_n A_n$, $B_\infty = \bigcap_n B_n$. Let h(x) be f(x) if $x \in A_\infty \cup \bigcup_n (A_{2n} \setminus A_{2n+1})$. Otherwise let h(x) be $g^{-1}(x)$. Show that h is well defined and $h: A \to B$ is one-to-one and onto.

Problem 3. Let κ be any infinite cardinal. Show that κ^+ is regular.

Problem 4. *Show that for infinite cardinals* $\kappa \geq \lambda$,

$$|\{X \subset \kappa : |X| = \lambda\}| = \kappa^{\lambda}.$$

Problem 5. Assume CH (but not GCH). Show that for every natural number n > 0, $\omega_n^{\omega} = \omega_n$.